

Immer, wenn's um Energie geht

Windenergie in Großostheim / Mömlingen / Schaafheim

Hintergrundinformationen zur Energiewende und der Windenergie im Speziellen

Rolf Pfeifer/Dr. Hannah Büttner Dipl. Ing.
Windkümmerer Unterfranken

Einführung und Vorstellen

Agenda

Dies erwartet Sie heute

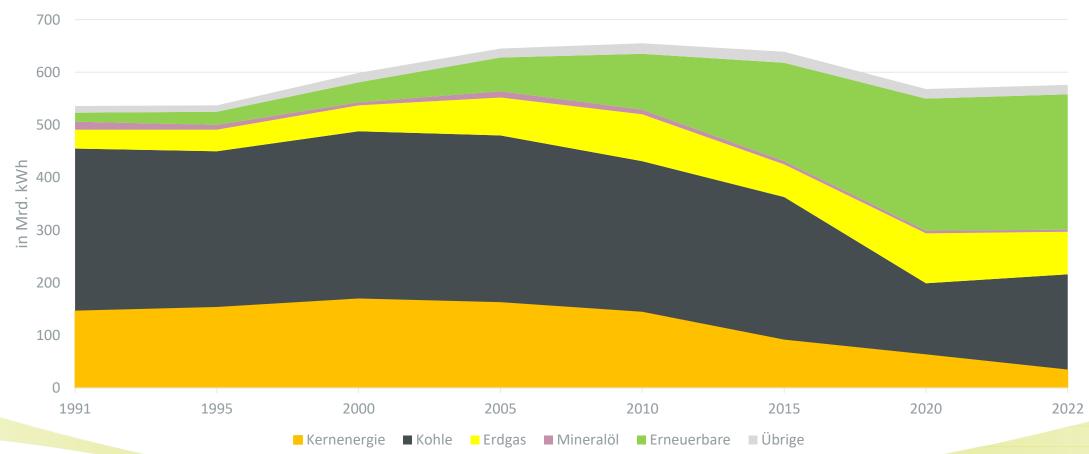
- > Begrüßung und Beginn (18 Uhr)
 - › Bürgermeister Schuler
- > Einführung und Vorstellung
 - > Dr. Hannah Büttner, Windkümmerer Unterfranken

→ Vortrag zu folgenden Themen (18.10 - 18.55)

- > Rolf Pfeifer, Windkümmerer Unterfranken
- Energiewende in Deutschland warum Windkraft unverzichtbar ist
- Windenergie vor Ort wie ist der aktuelle Stand der Planungen
- Was sind die Auswirkungen auf Menschen und Umwelt
- "Das Geld bleibt im Dorf" wie Windenergieprojekte zur lokalen Wertschöpfung beitragen können

Interaktive Pause, Sammeln von Fragen der Bürgerinnen und Bürger (18.55 - 19.20)

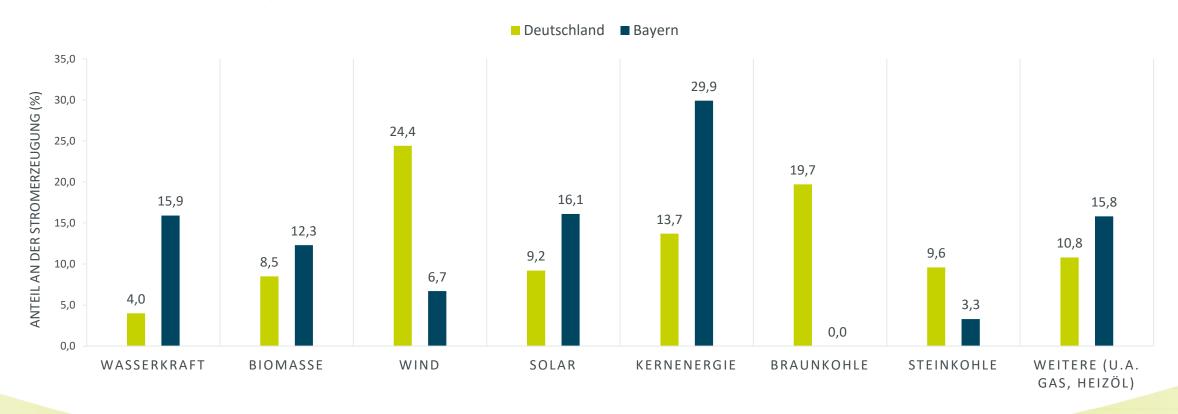
- Beantwortung der gesammelten Fragen im Plenum und moderierter Austausch (19.20 19.55)
- > Rolf Pfeifer, Windkümmerer Unterfranken, Dr. Hannah Büttner, Windkümmerer Unterfranken
- › Verabschiedung (ca. 20 Uhr)
 - Bürgermeister Schuler


Energiewende in Deutschland – warum die Windkraft unverzichtbar ist

Stromenergiewirtschaft der Vergangenheit in Deutschland

Energieträgereinsatz: woher kommt unser Strom

Energieträgereinsatz zur Stromerzeugung in Deutschland von 1991 - 2022


<u>Quelle</u>: Bundesverband deutsche Energie- und Wasserwirtschaft e.V.: Stromerzeugung und –verbrauch in Deutschland 1991 – 2022, Berlin 2023, https://www.bdew.de/energie/stromerzeugung-und-verbrauch-deutschland/

Wieso hat Bayern ein besonderes Stromversorgungsproblem?

Vergleich Strommix Deutschland und Bayern in 2019!

STROMERZEUGUNGSSTRUKTUR DEUTSCHLAND UND BAYERN



Quelle: Eigene Grafik anhand Strommix Deutschland und Strommix Bayern 2019

Strombedarf und -erzeugung Bayern

Auswirkungen der Atomkraftabschaltung

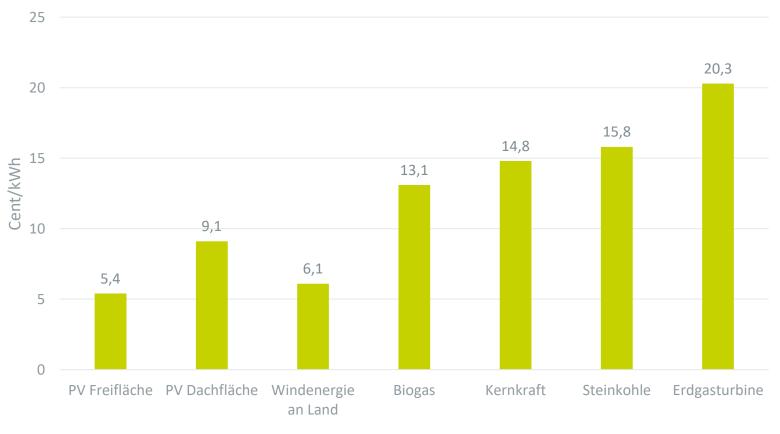
- > In 2019 wurde 12 TWh Strom importiert und 22 TWh durch Kernenergie erzeugt (ca. 40 % des Strombedarfs)
- > Im Referenzszenario 2035 würde ein Defizit von 32 TWh Strom entstehen (ca. 33 % des künftigen Strombedarfs)
 - Vergleichbar mit den Nettostromimporten Italiens in 2016 in Höhe von 37 TWh
- > Aussage des Verbands der Bayerischen Energie- und Wasserwirtschaft e.V. (VBEW):

"Mit der Abschaltung der beiden verbliebenen Reaktoren spätestens Ende 2021 bzw. Ende 2022 wird eine Stromlücke entstehen, die es unter der Aufrechterhaltung von Versorgungssicherheit, Preiswürdigkeit und Umweltfreundlichkeit zu schließen gilt."

<u>Quelle</u>: Betrachtungen zum Klimaschutz und zur Versorgungssicherheit der Bayerischen Stromversorgung im Jahr 2035. Gutachten im Auftrag der Fraktion Bündnis 90/Die Grünen im bayerischen Landtag. Hg. v. Öko-Institut

Die Zukunft: Nettostromerzeugung bis 2035

Wir werden zu einer "grünen" Strom-Nation!


- Stromverbrauch wird bis 2035 um 65 % steigen
- ErneuerbareStromerzeugung muss bis2035 um 240 % steigen
- Dafür ist es nötig, dass der jährliche Zubau von
 - Wind an Land von1,7 GW auf 10 GW/Jahr
 - PV-Dach/-Freifläche von
 5 GW auf 21 GW/Jahr
 gesteigert wird!

Quelle: Agora Energiewende, Prognos, Consentec (2022): Klimaneutrales Stromsystem 2035. Wie der deutsche Stromsektor bis zum Jahr 2035 klimaneutral werden kann.

Gestehungskosten einzelner Energieträger

Was kostet eine Kilowattstunde Strom im Kohle-, Gas- oder Wind- und PV-Strom?

- Genannte Kosten beziehen die externen Umweltkosten (Endlagerung, Schäden durch Klimawandel...) nicht mit ein!
- > PV und Windenergie sind hinsichtlich der Kostenaspekte alternativlos

■ Stromgestehungskosten in Cent/kWh

Quelle: Fraunhofer Institut für solare Energiesysteme (Hrsg.): Stromgestehungskosten erneuerbare Energien, Freiburg, Juni 2021 https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2021 ISE Studie Stromgestehungskosten Erneuerbare Energien.pdf

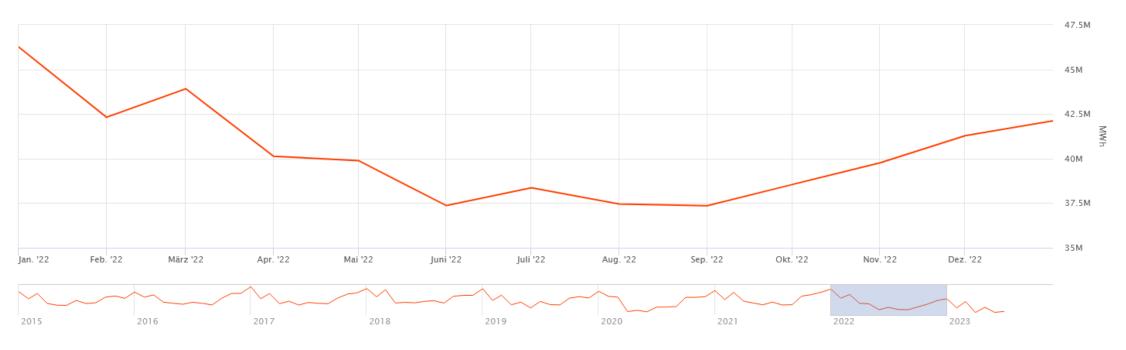
Aktuelle und künftige Situation in Bayern

Kommunale Chancen und Herausforderungen bei der Windenergie

Heute: ca. 0,6 % der Landesfläche

2032: mind.1,8 % der Landesfläche

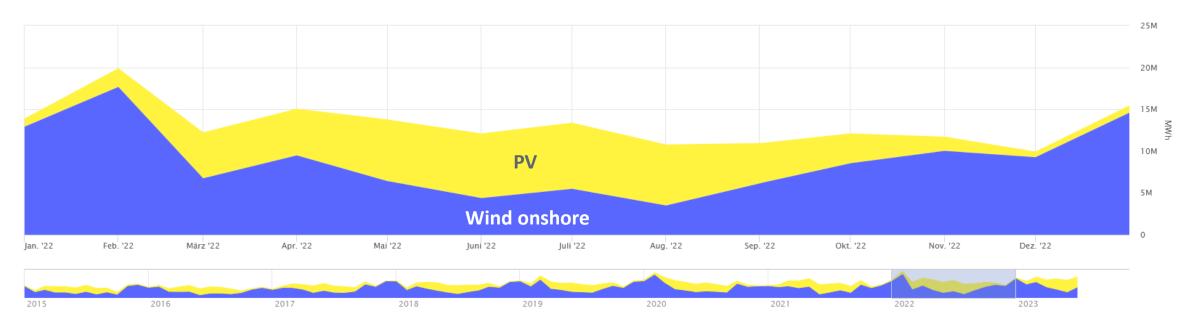
Heute: ca. 50 % Erneuerbare



2032: ca.70-80 % Erneuerbare

Stromverbrauch Deutschland in 2022

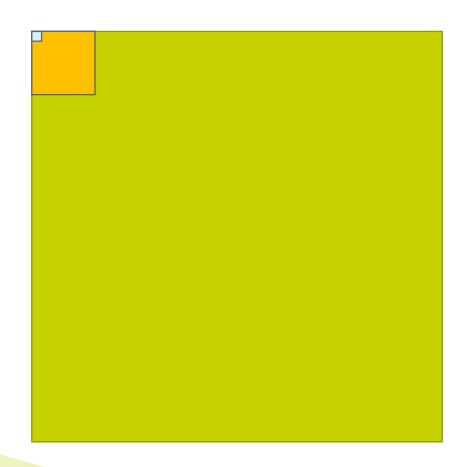
Saisonalität


- > Durchschnittlicher Tagesstromverbrauch Sommer 2022: 1,24 TWh
- > Durchschnittlicher Tagesstromverbrauch Winter 2021/2022: 1,46 TWh
 - Strombedarf im Winter ca. 16 % höher als im Sommer

Quelle: Eigene Berechnungen anhand Strommarktdaten https://www.smard.de/home/marktdaten

Stromerzeugung Deutschland in 2022

Saisonalität


- > Durchschnittlicher Tagesstromerzeugung durch EE Sommer 2022: **0,58 TWh**
- > Durchschnittlicher Tagesstromerzeugung durch EE Winter 2021/2022: **0,78 TWh**
 - Stromerzeugung durch EE im Winter ca. 22 % mehr als im Sommer
 - Davon 10 % durch PV und 58 % durch Wind (onshore)

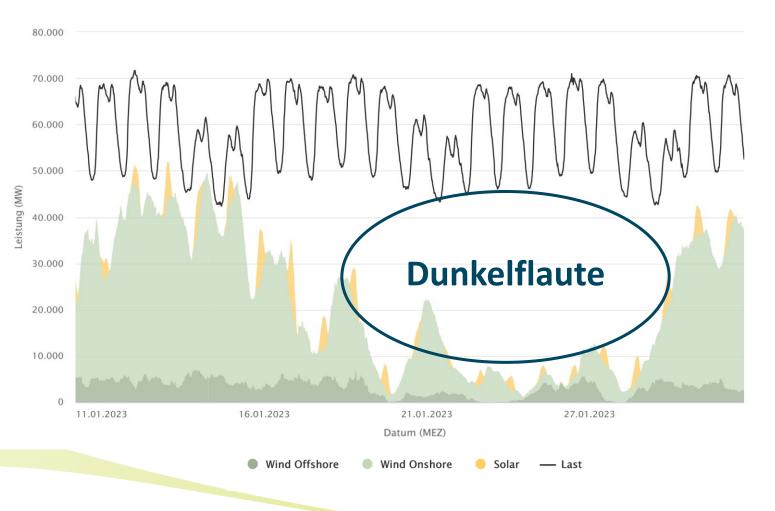
Quelle: Eigene Berechnungen anhand Strommarktdaten https://www.smard.de/home/marktdaten


Erneuerbare Stromerzeugung

Vergleich der Flächenbedarfe für 1 MWh Stromerzeugung

Quellen:

Handlungsleitfaden Freiflächensolaranlagen, Ministerium für Umwelt, Klima und Energiewirtschaft, Baden-Württemberg


Energiewendeatlas Deutschland 2030, Agentur für Erneuerbare Energien e.V.

Dunkelflaute

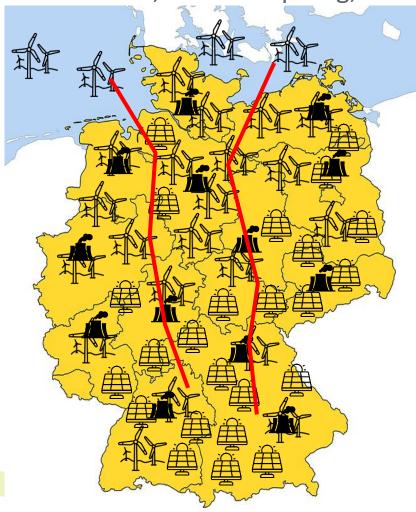
Einbruch in der Stromeinspeisung durch schwache Licht- und Windverhältnisse

Hintergrund:

Wetter- und jahreszeitbedingte
 Dunkelheits- und Schwachwindphase

Nationaler Lösungsansatz:

 Energiespeicher und Back-up-Kraftwerke zur Sicherung der Netzauslastung


Europäischer Lösungsansatz:

 Bessere Vernetzung vom europäischen Energienetz

Auswirkungen auf die Kommunen

Erneuerbare, Wertschöpfung, Netze...

- › Jährlicher Zubau (nur Wind!): bundesweit ca. 1000 – 1600 Windräder pro Jahr (nur Bayern: ca. 30 – 100 Windräder pro Jahr)
- > Wertschöpfungspotenzial durch Investitionen in Windräder¹: ca. 10 – 16 Mrd. Euro pro Jahr...
- > Künftige Pachtzahlungen²: ca. 100 320 Mio. Euro jährliche Zunahme an Pachtsummen...
- > Künftige Betriebserlöse³: ca. 100 480 Mio. Euro jährliche Zunahme an möglichen Erlösen aus dem laufenden Betrieb von Windenergieanlagen...

...im ländlichen Raum

- 1): Realistische Annahme, dass pro WEA ca. 10 Mio. € an Investitionskapital benötigt wird
- 2): Realistische Annahme, dass pro WEA ca. 100.000 200.000 € an Pachtzahlungen möglich sind
- 3): Realistische Annahme, dass pro WEA ca. 100.000 300.000 € an Erlösen aus dem Betrieb (bei einer Beteiligung) möglich sind

Windenergie vor Ort – wie ist der aktuelle Stand der Planungen

Prozessablauf in der Übersicht

Regionalplanung – Vorplanung – Projektentwicklung – Bau - Betrieb

Die aktuellen Planungen der Regionalverbände

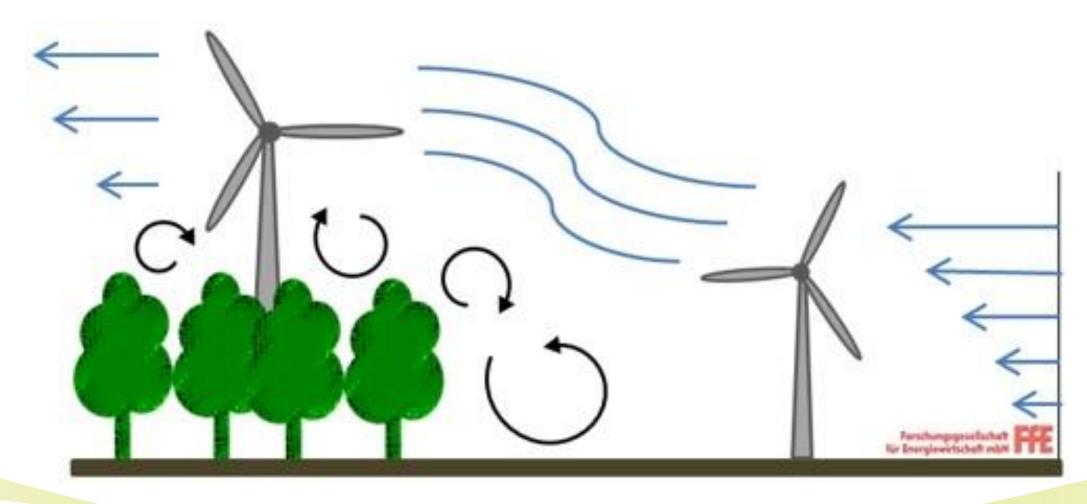
Wie verläuft der Prozess in Bayern – Planungsregion Bayerischer Untermain?

Vorabstimmung & Flächenbewertung bis ca. Anfang 2024

Potenzialflächenanalyse & informelle Beteiligung im Verlauf 2024

Formelles
Beteiligungsverfahren
Mitte/Ende 2024

- Kommunalgespräche
- Kriterienkatalog für Steuerungskonzept
- Identifikation des Raums, der regionalplanerisch nicht in Betracht kommt (82%)


- Regionalkonferenz
- Abstimmung Potenzialflächen mit berührten Städten und Gemeinden
- Konsolidierung und Konkretisierung
- Evtl. kommunale Einzelgespräche

- Verordnungsentwurf
- Begründung
- Karten
- Umweltbericht
- Flächenziel 1,8 % + X

Feststellung Regionalplan: ca. Mitte 2025

Warum so hoch? - Windverhältnisse im Offenland und über dem Wald

Entwicklung der Windenergjednlagen in den vergangenen 40 Jahren

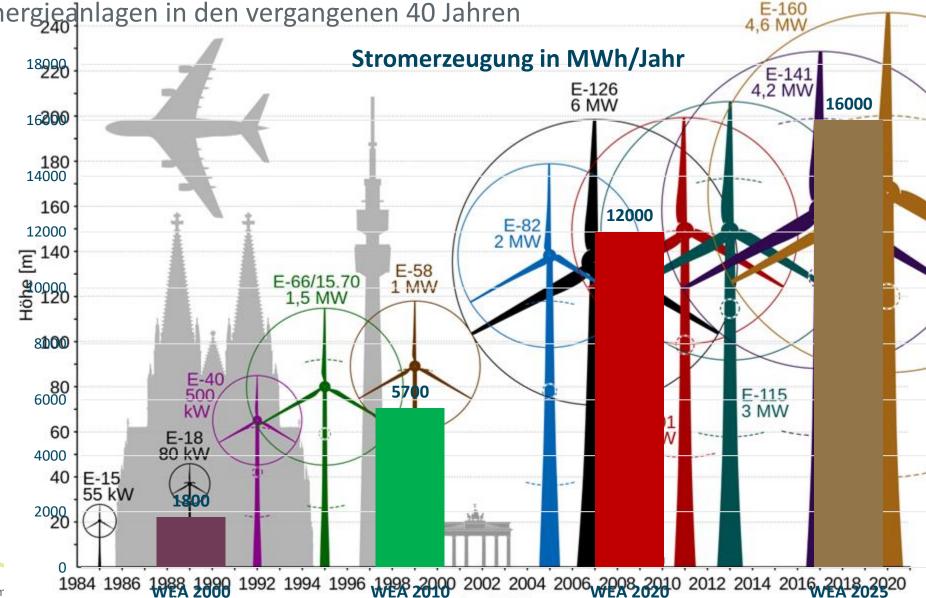
Heute:

Rotordurchmesser:

160 m

Nabenhöhen:

165 m


In 5 Jahren:

Rotordurchmesser:

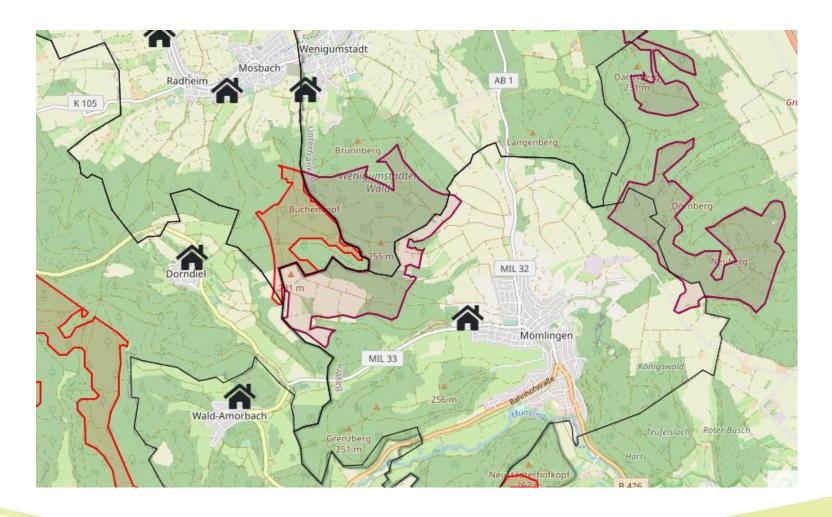
170 - 180 m

Nabenhöhen:

170 - 200 m

Jahr der Einführung

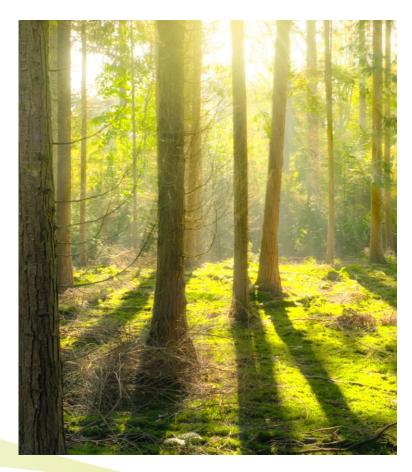
Rolf Pfeifer Windenergie in Großostheim/Mömlingen/Schaafheim


Windpark-Layout

- > Abstände der Anlagen zueinander
- > Stand-Sicherheit / Turbulenzen
- > Vorschriften: Dt. Institut für Bautechnik
- > Turbulenzintensität: <16 %
- > Notwendige Abstände abhängig vom Rotordurchmesser (RD=160m)
 - Senkrecht zur Hauptwindrichtung:
 aktuell: ca. 450 500 m, künftig: 550 600 m
 - In Hauptwindrichtung: aktuell: ca. 700 800 m, künftig: 800 900 m

Sprung ins WebGIS Tool

Wie sehen die Flächen in Großostheim/Mömlingen/Schaafheim aus?



Auswirkungen der Windenergie auf Mensch und Umwelt

Waldbewirtschaftung in Großostheim

Großostheim besitzt 1200 Hektar Gemeindewald

- **2018**: Aufstellung eines neuen Forstwirtschaftsplans
- 2018: Sachverständige begutachten Großostheimer Wald, Ergebnis: jährlicher Holz-Zuwachs von 7.700 – 9000
 Festmeter (Fm)
- 2020: Jahreseinschlag gesamt lag bei 9.155 Fm
- 2021: Jahreseinschlag gesamt lag bei 2.477 Fm
- 2022: Jahreseinschlag gesamt lag bei 6.699 Fm
- 2020 2022 lag der Jahreseinschlag damit im Durchschnitt ca.
 2.670 Festmeter niedriger als durch Zuwachs im Rahmen einer nachhaltigen Forstbewirtschaftung möglich gewesen wäre

Windenergie im Wald

Auswirkungen von Windenergieanlagen auf den Wald

Für eine Windenergieanlage werden ca. 0,4 – 0,8 Hektar Wald gerodet

Wald ohne Windenergieanlagen

Klimaschutzwirkung

Ein Hektar Wald bindet ca. 6 – 12 Tonnen CO₂

<u>Durchschnittliche Einschlagsmenge im</u> Großostheimer Gemeindewald

Jährlich werden ca. **6.100 Festmeter** (Fm) Wald geerntet

Ausgleichszahlungen für den Waldumbau Keine

Wald mit Windenergieanlagen

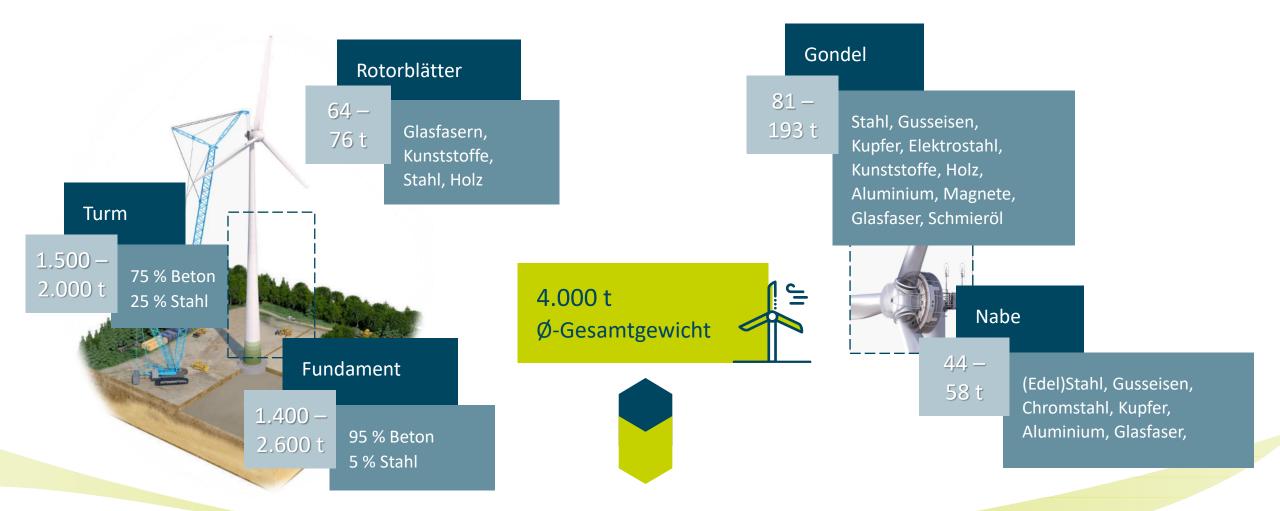
Klimaschutzwirkung

Ein Windenergieanlage spart durch grünen Strom ca.

6.000 – 10.000 Tonnen CO₂ ein

<u>Durchschnittliche Einschlagsmenge im Gemeindewald</u>

Für eine WEA werden ca. **150-300 Fm** gefällt. Die für die Windräder eingeschlagene Menge wird vom üblichen Jahreseinschlag abgezogen. Damit wird in der Summe nicht mehr eingeschlagen!


Ausgleichszahlungen für den Waldumbau

Mehrere Hunderttausend Euro

Zusammensetzung einer Windenergieanlage

Welche Materialien sind verbaut?

Rückbau und Recycling einer Windenergieanlage

Wie ist der Rückbau geregelt?

- > § 35 Abs. 5 Satz 2 Baugesetzbuch (BauGB):
 - "Für [das] Vorhaben [...] ist als weitere Zulässigkeitsvoraussetzung eine Verpflichtungserklärung abzugeben, das Vorhaben nach dauerhafter Aufgabe der zulässigen Nutzung zurückzubauen und Bodenversiegelungen zu beseitigen."
- > Rückbau als Voraussetzung für die Baugenehmigung
 - > Bürgschaft sichert den Abbau finanziell ab.
 - Nach 10 bis 15 Jahre Neubewertung der Rückbaukosten
- > Nach Nutzungsende greifen verschiedene Gesetzestexte
 - Kreislaufwirtschaftsgesetz (KrWG)
 - Gewerbeabfallverordnung (GewAbfV)
 - Chemikaliengesetz (ChemG)
 - Elektro- und Elektronikgerätegesetz (ElektroG)

Rolf Pfeifer

Rückbau einer Windenergieanlage

Wie wird eine Windenergieanlage zurückgebaut?

- > Einzelfallbezogenes Rückbau- und Recyclingkonzept
 - Anlagenhersteller bieten Rückbau-Leitfäden an
- > Beauftragung qualifiziertes Abbruch- und Entsorgungsunternehmen
- > Ablauf:

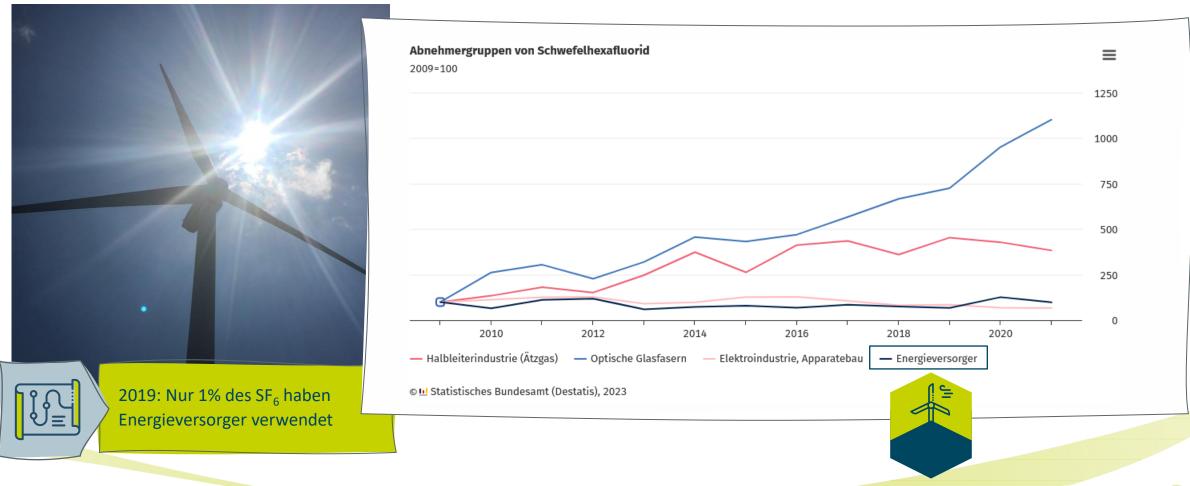
Entnahme von Ölen, Fetten, SF₆ etc. Abbau & zersägen der Rotorblätter

Abbau & ggf. Zerlegung der Gondel

Schrittweise
Demontage des Turms

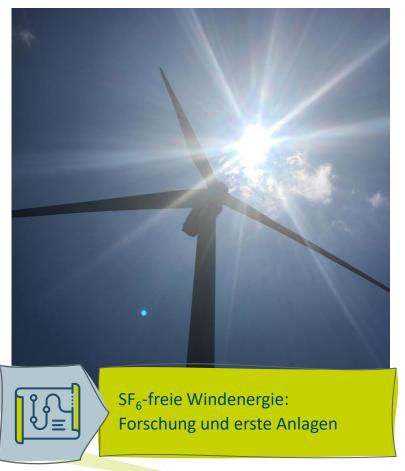
Rückbau des Fundaments

Renaturierung


- > Kosten: Kran, Transport, Zerkleinerung & Entsorgung, Erdarbeiten
- > Erlöse: Gebrauchtmarkt, Stahl, Kupfer, Aluminium, Elektroschrott

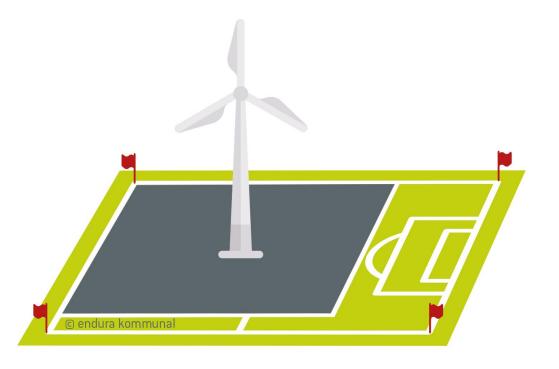
SF₆ – Schwefelhexafluorid

Wie hoch ist der Anteil in der Windindustrie?



SF₆ – Schwefelhexafluorid

Wieso wird es genutzt und wie wird damit umgegangen?



- > Problem: Treibhauspotenzial von 22800 CO₂-Äquivalenten
- > Nutzen: Isoliergas für die Schaltanlagen in WEA
 - > Ermöglicht kompakte, gewicht- und ressourcensparende Bauweise
 - > Farb- und geruchslos, ungiftig und nicht brennbar
- > Regulierung: EU-Verordnung 517/2014 & DIN EN 60480
 - Verwendung von SF₆ folgt strengen Auflagen
 - > Stellt Recycling, Aufbereitung oder Zerstörung sicher

Flächenbedarf für Windenergieanlagen

→ Vormontagefläche: ca. 1.500 m² (temporär)

→ Transportflächen: ca. 1.500 m² (temporär)

→ Rodungsfläche

Fundament: ca. 1000 m² (ca. 50% temporär)

→ Kranstellfläche: ca. 2.200 m² (dauerhaft)

→ Kranausleger: ca. 2.000 m² (dauerhaft)

Insgesamt: ca. 3.500 m² temporär, ca. 4.700 m² dauerhaft

Ca. 2/3 eines Fußballfelds

Aufbau einer Windenergieanlage im Offenland

> Turmhöhe: ca. 150 m

> Kranausleger-Länge: ca. 170 m

> Rotorblätter-Länge: ca. 80 m

Transport

- > Selbstfahrer
- > Turmsegment
 - ca. 30 m lang
 - ca. 5 m Durchmesser

Sprung ins 3D-Analysetool Energieatlas Bayern

https://karten.energieatlas.bayern.de

- → Analyse
- → 3D-Analyse Wind und PV

"Das Geld bleibt im Dorf" – wie Windenergieprojekte zur lokalen Wertschöpfung beitragen können

Wirtschaftlichkeit

Beispielszenario anhand eines Windparks

Windenergieanlagentyp: 3 x Vestas

Technik: Rotordurchmesser 150 m,

Nabenhöhe 166 m, Gesamthöhe 233 m

V 150, 5,6 MW Leistung/WEA

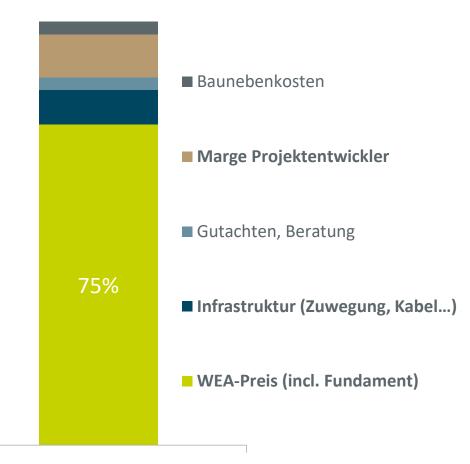
Gesamtinvestition: ca. 30 Mio. €

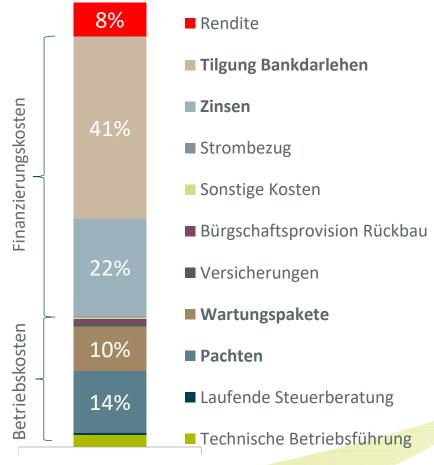
Eigenkapital/Fremdkapital: 6 Mio EK/24 Mio. FK

Pachterlöse: ca. 14 % vom Umsatz

Jahr der Inbetriebnahme: Mitte 2023

Jahresenergieertrag: ca. 37 Mio. kWh (netto)


Strom für ca. 11.000 Haushalte



Wirtschaftlichkeit

Kosten für Investition und Betrieb von Windparks

Investitionskosten 30 Mio. €

Kommunale Wertschöpfung bei Windpark mit drei WEA

Wieviel bleibt vor Ort ohne direkte Beteiligung am Windpark?

Ertrag von drei modernen WEA

ca. 37 Mio. kWh Stromertrag/Jahr

Erlös aus EEG-Ausschreibung: ca. 3,2 Mio. Euro/Jahr (bei 8,7 Cent) Einnahmen aus der Pacht

Pachtzins pro Jahr 14 % vom Ertrag Mindestpacht: 130.000 Euro/WEA

> Für Windpark: ca. 450.000 Euro/Jahr

Finanzielle
Beteiligung (§ 6EEG)
für Kommune

Zuwendungsanteil für Kommunen: **0,2 Cent/kWh**

EEG-Beteiligung: **74.000 Euro/Jahr**

Einnahmen aus der Gewerbesteuer (90% Regel)

> Je Standort ab 16. Jahr: GewSt-Hebesatz:

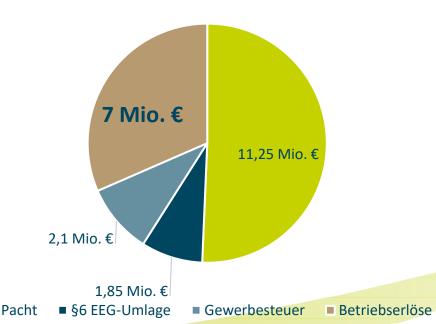
360 %

ca. 2,1 Mio. Euro vom 17.-25. Jahr

Gesamteinnahmen aus Windpark

In einem Jahr: ca. 524.000 Euro (o. GewSt)

In 25 Jahren: ca. 15,2 Mio. Euro (inkl. GewSt)


Lokale Wertschöpfung bei Beteiligung

Was resultiert, wenn sich die Gemeinde am Windpark beteiligt?

Ohne kommunale Beteiligung in 25 Jahren = **15,1 Mio. Euro**

Mit 50%iger Beteiligung durch Kommune/Bürgerschaft vor Ort in 25 Jahren = 22,1 Mio. €

Lokale Wertschöpfung steigern

Die wichtigsten Bürgerbeteiligungsmodelle im Überblick

GmbH & Co. KG

(Geldgeber & Eigentümer)

Regionale Eigentümer Windparks

Regionale Eigentümer Solarparks

- Überregionale KG-Modelle
- Beteiligung am Gewinn

- Mitunternehmer
- Informationspflichten und Mitsprache
- Einkünfte aus Gewerbebetrieb
- Prospektpflicht (über 20 Anteile)

Genossenschaft

(Geldgeber & Eigentümer)

Anwendung

Energiegenossenschaften

- Meist mehrere Projekte innerhalb eG
- Beteiligung am Gewinn

Rahmenbedingungen

Informationspflichten und Mitsprache

- Einkünfte aus Kapitalvermögen
- **Keine Prospektpflicht**

Nachrangdarlehen

(Nur Geldgeber)

- Einzelinvestition über 25.000 EUR
- Emissionsvolumina über 6 Mio EUR
- Rendite Mindestzins + ggf. Bonuszins

Darlehensgeber

Mitglied

- Keine Informationspflichten und Mitsprache
- Einkünfte aus Kapitalvermögen
- Prospektpflicht (über 20 Anteile)

Schwarmfinanzierung

(Nur Geldgeber)

- Einzelinvestiton bis 25.000 EUR
- Emissionsvolumina bis 6 Mio EUR p.a.
- Rendite Mindestzins + ggf. Bonuszins

- Darlehensgeber
- Keine Informationspflichten und Mitsprache
- Einkünfte aus Kapitalvermögen
- Keine Prospektpflicht

MODELLE

Kontakt

Gerne stehen wir für weitere Fragen zur Verfügung

Rolf Pfeifer

Geschäftsführer

Telefon: 0761 3869098-0

E-Mail: rolf.pfeifer@endura-kommunal.de

endura kommunal GmbH

Solar Info Center Emmy-Noether-Str. 2 79110 Freiburg

Tel. 0761 3869098-0 Fax 0761 3869098-29

info@endura-kommunal.de www.endura-kommunal.de

Vielen Dank für Ihre Aufmerksamkeit!

Interaktive Pause und Sammeln Ihrer Fragen!

U.a. zu

- 1. Energiewende in Deutschland warum Windkraft unverzichtbar ist
- 2. Windenergie vor Ort wie ist der aktuelle Stand der Planungen und
- 3. Was sind die Auswirkungen auf Menschen und Umwelt
- 4. "Das Geld bleibt im Dorf" wie Windenergieprojekte zur lokalen Wertschöpfung beitragen können

Beantwortung der gesammelten Fragen und moderierter Austausch

U.a. zu

- 1. Energiewende in Deutschland warum Windkraft unverzichtbar ist
- 2. Windenergie vor Ort wie ist der aktuelle Stand der Planungen
- 3. Was sind die Auswirkungen auf Menschen und Umwelt
- 4. "Das Geld bleibt im Dorf" wie Windenergieprojekte zur lokalen Wertschöpfung beitragen können

Abschluss und Verabschiedung

